Run 14 RHIC Machine/Experiments Meeting

1 July 2014

Agenda:

- Run 14 Schedule (Pile)
- Machine Status (Robert-Demolaize)
- STAR and PHENIX Status (Experiments)
- STAR Proposal for special internal target run at injection
- Other

Call in bridge line is 631-344-8383

Run 14 plan based on 22 weeks cryo operation

and Fischer et.al. RHIC Collider Projections (FY 2013 – FY 2017), 4 Jun 2013

- ✓ 3 Feb, Begin cool-down to 4.5K
- ✓ 4 Feb, Cool-down to 6K in Blue
- ✓ 7 Feb, Blue and Yellow at 4.5 deg K
- √ 10-Feb, Beam in Blue and Yellow at injection
- ✓ 15-Feb, Begin \sqrt{s} = 14.6 GeV/n AuAu physics
- √ 11 Mar (Tuesday, 0800), End √s = 14.6 GeV/n AuAu physics run begin setup for √s = 200 GeV/n AuAu
- ✓ 15-Mar (~14:00, store 18046), Begin \sqrt{s} = 200 GeV/n AuAu physics run
 - ✓ PHENIX 1st physics store = 18046 (15 March)
 - ✓ STAR 1st physics store = 18064 (17 March)
- ✓ 16-Jun (0700), end 13.3 week \sqrt{s} = 200 GeV/n AuAu run
- 16-June begin setup for √s = 200 GeV/n ³HeAu run
- 20-June first Physics Store
- today, 1 July...
- \bullet 7- 6-July (0700), end 2.3 week \sqrt{s} = 200 GeV/n ³HeAu run, power supply regulator work
- 4-7-July, Test DX move then begin cryo warm-up
- 7- 10-July, warm-up complete, 22.0 22.4 cryo weeks of operation

See http://www.rhichome.bnl.gov/AP/RHIC2014/ for the Run Coordinator's detailed plans

³He-Au at 200 GeV/n

STAR Goals

 Physics Goal: 150M in min-bias and central triggers

PHENIX Goals

1.8 B events within +/ 10 cm

STAR Request (extracted from Time Meeting Presentation)

Special runs and datasets before end of run:

- Beam mis-steering at STAR for lower luminosity. Two low luminosity stores will give us data that require minimal to no calibrations for faster analysis.
- 3 hours of Fixed Target tests.
- 3 hours of data taking for Heavy Flavor Tracker tests.

STAR Request

Fixed Target physics program:

The key observables to study are:

- Pions and protons spectra.
- Directed flow (v_1) .
- Elliptic flow (v_2) .
- Two-pions HBT.

at center-of-mass energies of 3-4.5 GeV.

These observables will extend the BES physics down to lower energies. They are also to be compared with published results from AGS,E866/E917,E877 and E895 experiments.

Mustafa Mustafa - RHIC/AGS 2014 - BNL

.

STAR Request

Fixed Target tests:

Request:

- Au in Yellow ring at injection energy (9.8GeV) and orbit (5mm vertical drop).
- The goal is to get 50k Au+Au fixed target events.

Archive

FY 2014 power rebate \$ in BNL bank = -\$1.21M with ~0.9M of this assignable to C-AD through May

Thru May 2014

STAR – Slides from Time Meeting

Luminosity hunger trigger (MTD program) looks pretty good But always better with more statistics (Upsilon)!

- Due to acceptance loss in PXL detector caused by beam radiation, we need ~30 % more events to have the same quality of physics result.
- Re-optimizing at STAR increases HFT data rate by ~ 8% per hour store
- We need more time at store for Au+Au@200GeV!

STAR Proposal for optimum running

Proposal for optimizing RHIC Running between now and switch to He3- Au

RHIC Coordination mtg.
May 27, 2014
Bill Christie
For the STAR Collaboration

Proposal:

- 1.) Drop the collision rate in STAR down to 50 kHz 2.5 hours into the store, as opposed the current mode where it's dropped after 3 hours.
- 2.) Extend the store length from 10 hours to 11 hours.
- 3.) Minimize Machine Development time between now and the switchover to He3-Au running.
- 4.) Consider dropping one APEX session between now and the switchover to He3-Au running.
- 5.) Investigate implementing the dynamic Beta squeeze (aka THOR) at STAR late in the store when the 50 kHz rate can't be maintained.
- 6.) Consider gains in the luminosity lifetime that could result from either mis steering PHENIX or increasing the PHENIX beta*.
- 7.) Depending on how far we get in reaching STAR's goal's, reconsider the He3-Au switch over date.

17 Dec

NSRL (NRO)

BLIP (Isotopes)

BLIP (other)
Shutdown (RHIC)

Goals for Run 14 (based on Beam Use Requests) (11 Feb, DRAFT, to be updated by experiments)

PHENIX

- Au+Au @ 200 GeV for 12 weeks, $L = 1.5 \text{ nb}^{-1}$ sampled luminosity within |z| < 10 cm
 - \sim ~30% within |z| < 10 cm]
 - > ~90% DAQ efficiency
 - > ~50% bandwidth, DAQ saturation factor (?)
 - → 11 nb⁻¹ delivered

<u>STAR</u>

- Au+Au @ 200 GeV for 14 weeks, L= 10 nb⁻¹ recorded, 10⁹ min bias triggers within |z| < 5 cm] \rightarrow (2x10⁹ triggers required)
 - ~ 60% (should be better) sampling efficiency
 - \rightarrow 16.7 nb⁻¹ delivered
- Au+Au @ 15 GeV for 3 weeks, 150M min bias triggers

4/8/2014 New Electric Rates for this year

Through final fill 18010, 11 Mar 2015

max/min projections from Fischer et.al. "RHIC Collider Projections (FY2014-FY2018)", 4 June 2013

From Ingrassia, http://www.cadops.bnl.gov/AGS/Operations/Run14/

File Window Markers Analysis

starEventTrigger:rate (D)

Window Markers Analysis File

starEventTrigger;rate (D)

http://www.bnl.gov/cad/esfd C-A Operations-FY14 4 Mar 14 Scheduling Physicist: Chuyu Liu planned, budget permitting concurrent with RHIC setup with beams ramp up luminosity FY 2014 **Program Element** Oct Nov Dec Jan Feb Mar May Jun Jul Aug Sep AGS-Booster-Tandem/Linac/EBIS Startup 22.0 weeks 7 July RHIC Cryo Cooldown to 45 deg K RHIC Cryo Cooldown/Warm-up 3 Feb RHIC Cryo Operation RHIC Cryo off RHIC STAR & PHENIX 15 Feb RHIC Research with $\sqrt{s} = 200 \text{ GeV/n AuAu}$ 4 July RHIC Research with $\sqrt{s} = 15 \text{ GeV/n AuAu}$ Contingency/other beams Particle Accelerator Conference (IPAC) 7 Oct 15 Nov 16 May 31 Mar TBD 14A NSRL (NASA Radiobiology) TBD 29 Mar 22 Nov NSRL (NRO) 18 Nov BLIP (Isotopes) 17 Dec BLIP (other) Shutdown (RHIC)

Table 2: Maximum luminosities that can be reached after a sufficiently long running period. The beam energy is stated. Other ion combinations can be estimated on demand. For species combinations not yet run the minimum luminosities are approximately 50% of the maximum.

Mode	Beam energy	No of colliding	Ions/bunch [10 ⁹]	β [*] [m]	Emittance [mm]	$L_{ m peak} \ m [cm^{-2}s^{-1}]$	$L_{ m store\ avg} \ [{ m cm}^{-2}{ m s}^{-1}]$	$L_{ m week}$
	[GeV/n]	bunches						
Pb-Pb	98.3	111	1.1	0.7	23→8	20×10^{26}	17×10^{26}	0.6 nb ⁻¹
Au-Au	100	111	1.4	0.7	23→8	40×10^{26}	35×10^{26}	1.2 nb ⁻¹
h-Au ★	100	111	20 / 1.3	0.8	20→23	8×10^{28}	5×10^{28}	16 nb ⁻¹
d-Au ★	100	111	110 / 1.4	0.8	17→25	47×10^{28}	28×10^{28}	95 nb ⁻¹
р∱-С	100	111	180 / 20	0.8	18→23	10×10^{32}	7×10^{32}	2.3 pb ⁻¹
p∱-Cu	100	111	180 / 4.0	0.8	18→23	200×10^{28}	150×10^{28}	475 nb ⁻¹
p↑-Au	100	111	180 / 1.4	0.8	18→23	70×10^{28}	50×10^{28}	165 nb ⁻¹
p↑-p↑*	100	107	160	0.85	17→25	65×10^{30}	38×10^{30}	14 pb ⁻¹
p↑-p↑*	255	107	200	0.65	20→25	280×10^{30}	170×10^{30}	56 pb ⁻¹

^{*} h (helion) – nucleus of the ³He atom; d (deuteron) – nucleus of the ²H atom; p (proton) – nucleus of the ¹H atom.

* We expect that an intensity- and time-averaged store polarization P of up to 65%, as measured by the H jet, can be reached at 100 GeV. At 255 GeV we expect the polarization P to reach up to 57%. In Run-11 PHENIX had 107 and STAR 102 colliding bunches.

Figure 4: Projected minimum and maximum integrated luminosities for Au-Au at 100 GeV/nucleon.

7 Feb 2014, Blue and Yellow at 4.5 deg K

Who's Who for 2014

RHIC Au-Au Run Coordinator Operations:	Gregory Marr	gmarr@bnl.gov	631-344-7810 (office)
	Vincent Schoefer	schoefer@bnl.gov	631-344-8453 (office)
	<u>Travis Shrey</u>	shrey@bnl.gov	631-344-7451 (office)
RHIC 7.3 GeV Au-Au Run Coordinator planning:	Christoph Montag	montagc@bnl.gov	631-344-4820 (office)
RHIC 100 GeV Au-Au Run Coordinator planning:	Guillaume Robert-Demolaize	grd@bnl.gov	631-344-8215 (office)
Scheduling Physicist:	Chuyu Liu	cliu1@bnl.gov	631-344-4431 (office)
AGS liaison:	Haixin Huang	huanghai@bnl.gov	631-344-5446 (office)

For example, 20 weeks of RHIC refrigerator operation in FY 2014 could be scheduled in the following way:

Cool-down from 50 K to 4 K	1 week	
Set-up mode 1 (Au-Au at 7.5 GeV/nucleon) Ramp-up mode 1 Data taking mode 1	1 week ½ weeks 2 ½ weeks	(no dedicated time for experiments) (8 h/night for experiments)
Set-up mode 2 (Au-Au at 100 GeV/nucleon) Data taking mode 2 with further ramp-up	½ week 10 weeks	(no dedicated time for experiments)
Set-up mode 3 (p↑-p↑ at 100 GeV) Ramp-up mode 3 Data taking mode 3+1 with further ramp-up	1 week ½ weeks 2 ½ weeks	(no dedicated time for experiments) (8 h/night for experiments)
Warm-up	½ week	

From Fischer et. al., RHIC Collider Projections (FY 2014 – FY 2018), 4 June 2013